Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5: Ce3+, Yb3+

نویسندگان

  • Jinke Tang
  • Wenli Zhou
  • Jie Yang
  • Jing Wang
  • Ye Li
  • Xiaojun Kuang
  • Hongbin Liang
چکیده

The effects of the 5d energy locations of Ce centers on the NIR quantum cutting process were studied in Y2SiO5 with two different substitutional Y lattice sites for Ce and Yb. Powder XRD and Rietveld refinement were used to characterize phase purity, crystal structure, lattice parameters and occupation fractions of Y2-x-yCexYbySiO5 (x = 0.002 and 0.3, y = 0-0.2). PLE and PL spectra show that both kinds of Ce centers in Y2-xyCexYbySiO5 can cooperatively transfer energy to Yb -Yb ions pair. The dependence of the integrated emission intensities of Ce and Yb, decay lifetime (τ) of Ce, nonradiative energy transfer rate (KCe→Yb), cooperative energy transfer efficiency (ηCET) and quantum efficiency (ηQE) on the concentration of Yb ions were studied in details. More importantly, these results demonstrate that the 5d energy locations of Ce ions have a great influence on NIR quantum cutting process in Ce-Yb system: the closer they are to twice the absorption energy (~20000 cm) of Yb, the higher the cooperative energy transfer efficiency from the lowest 5d excited state of Ce to the Yb-Yb ions pair. ©2012 Optical Society of America OCIS codes: (160.5690) Rare-earth-doped materials; (300.6280) Spectroscopy, fluorescence and luminescence; (260.2160) Energy transfer. References and links 1. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci. 55(5), 353– 427 (2010). 2. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073–3077 (2009). 3. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11(47), 11081–11095 (2009). 4. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961). 5. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92(3), 1668–1674 (2002). 6. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd, Yb,” Phys. Rev. B 81(3), 035107–035116 (2010). 7. X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb,Yb phosphors by Ce codoping,” J. Appl. Phys. 106(11), 113521 (2009). 8. L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr, Yb,” Spectrosc. Lett. 43(5), 373–381 (2010). 9. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr, Yb) couple,” Phys. Rev. B 81(15), 155112 (2010). 10. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb,” Phys. Rev. B 71(1), 014119–014129 (2005). 11. J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce, Yb codoped YBO3 phosphors by cooperative energy transfer,” Opt. Mater. 32(9), 998–1001 (2010). #164893 $15.00 USD Received 16 Mar 2012; revised 10 May 2012; accepted 24 May 2012; published 7 Jun 2012 (C) 2012 OSA 2 July 2012 / Vol. 20, No. S4 / OPTICS EXPRESS A510 12. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce, Yb-codoped yttrium aluminum garnet,” Opt. Lett. 34(22), 3565–3567 (2009). 13. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce-Yb Co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101–043105 (2009). 14. J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in EuYb Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc. 157(8), B1146–B1148 (2010). 15. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce,Tb,Yb phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009). 16. G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce,Pr: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem. 22(5), 2226–2232 (2012). 17. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce to Yb in borate glasses,” J. Appl. Phys. 104(11), 116105 (2008). 18. A. A. Coelho, TOPAS ACADEMIC. Brisbane: Australia, 2005, version 4. 19. B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya 15, 926–933 (1970). 20. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A 32(5), 751–767 (1976). 21. L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids 67(4), 643–650 (2006). 22. A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater. 30(3), 416–422 (2007). 23. S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat. 16, 4579–4590 (2004). 24. H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc. 151(7), J39–J42 (2004). 25. H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp. 495(1), 162–166 (2010). 26. E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B 404(22), 4426–4430 (2009). 27. H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce scintillator grown by the Czochralski method,” J. Appl. Phys. 108(3), 033519–033524 (2010). 28. H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn. 108(1263), 1003–1006 (2000). 29. R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu in BaGa2S4,” J. Phys. Chem. Solids 66(6), 1049–1056 (2005). 30. S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B 109(7), 2699–2702 (2005). 31. B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C 114(14), 6770–6777 (2010).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process

Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investig...

متن کامل

The development of Ce3+-activated (Gd,Lu)3Al5O12 garnet solid solutions as efficient yellow-emitting phosphors

Ce3+-activated Gd3Al5O12 garnet, effectively stabilized by Lu3+ doping, has been developed for new yellow-emitting phosphors. The powder processing of [(Gd1-x Lu x ) 1-y Ce y ]3Al5O12 solid solutions was achieved through precursor synthesis via carbonate precipitation, followed by annealing. The resultant (Gd,Lu)AG:Ce3+ phosphor particles exhibit typical yellow emission at ∼570 nm (5d-4f transi...

متن کامل

Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

Related Articles Overcoming the bandgap limitation on solar cell materials Appl. Phys. Lett. 100, 083901 (2012) Energy transfer in CaYAlO4: Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple J. Appl. Phys. 111, 043104 (2012) GaAs/GaInNAs quantum well and superlattice solar cell Appl. Phys. Lett. 100, 073508 (2012) Understanding the operation of quantum dot intermediate ba...

متن کامل

Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015